Matematyka w deep learningu. Co musisz wiedzieć...

Helion
Oprawa: Broszurowa
Rok wydania: 2024
Autor: Ronald T. Kneusel
Data premiery: 2024-11-05
Format: 228x165 mm
Liczba stron: 344
88 punktów lojalnościowych za ten produkt
Dostępność:
dostępny
Producent:
EAN:
9788328910164
Czas wysyłki:
24 godziny
88,99 zł
Kup teraz
Dodaj do ulubionych Zapytaj o produkt
Opis produktu
Cechy
Komentarze

Uczenie maszynowe niesie ze sobą obietnicę niezwykłych wynalazków: od samochodów autonomicznych po systemy medyczne diagnozujące choroby lepiej niż doświadczeni lekarze, ale także daje pole do rozwijania dziesiątków innych mniej lub bardziej niepokojących innowacji. Dziś do budowania systemów uczenia maszynowego można posłużyć się wygodnymi frameworkami, jednak rzeczywiste zrozumienie uczenia głębokiego wymaga znajomości kilku koncepcji matematycznych.

Koncepcje te zostały przystępnie wyjaśnione właśnie w tej książce. W szczególności zapoznasz się z praktycznymi aspektami probabilistyki, statystyki, algebry liniowej i rachunku różniczkowego. Prezentacji tych zagadnień towarzyszą fragmenty kodu w Pythonie i praktyczne przykłady zastosowań w uczeniu głębokim. Rozpoczniesz od zapoznania się z podstawami, takimi jak twierdzenie Bayesa, a następnie przejdziesz do bardziej zaawansowanych zagadnień, w tym uczenia sieci neuronowych przy użyciu wektorów, macierzy i pochodnych. Dwa ostatnie rozdziały dadzą Ci szansę użycia nowej wiedzy do zaimplementowania propagacji wstecznej i metody gradientu prostego - dwóch podstawowych algorytmów napędzających rozwój sztucznej inteligencji.

W książce między innymi:

zastosowanie statystyki do zrozumienia danych i oceny modeli

prawidłowe korzystanie z reguł prawdopodobieństwa

użycie wektorów i macierzy do przesyłania danych w sieciach neuronowych

algebra liniowa w analizie głównych składowych i rozkładu według wartości osobliwych

gradientowe metody optymalizacji, takie jak RMSprop, Adagrad i Adadelta

Chcesz zrozumieć sieci neuronowe? Odpowiedzi szukaj w matematyce!